
SIAM J. SCI. COMPUT.

c� 2018 Society for Industrial and Applied Mathematics

Vol. 40, No. 4, pp. A2033–A2061

NUMERICAL INTEGRATION IN MULTIPLE DIMENSIONS WITH
DESIGNED QUADRATURE⇤

VAHID KESHAVARZZADEH† , ROBERT M. KIRBY‡ , AND AKIL NARAYAN§

Abstract. We present a systematic computational framework for generating positive quadra-
ture rules in multiple dimensions on general geometries. A direct moment-matching formulation
that enforces exact integration on polynomial subspaces yields nonlinear conditions and geometric
constraints on nodes and weights. We use penalty methods to address the geometric constraints
and subsequently solve a quadratic minimization problem via the Gauss–Newton method. Our anal-
ysis provides guidance on requisite sizes of quadrature rules for a given polynomial subspace and
furnishes useful user-end stability bounds on error in the quadrature rule in the case when the poly-
nomial moment conditions are violated by a small amount due to, e.g., finite precision limitations
or stagnation of the optimization procedure. We present several numerical examples investigating
optimal low-degree quadrature rules, Lebesgue constants, and 100-dimensional quadrature. Our cap-
stone examples compare our quadrature approach to popular alternatives, such as sparse grids and
quasi-Monte Carlo methods, for problems in linear elasticity and topology optimization.

Key words. numerical integration, multiple dimensions, polynomial approximation, quadrature
optimization

AMS subject classifications. 41A55, 65D32

DOI. 10.1137/17M1137875

1. Introduction. Numerical quadrature, the process of computing approxima-
tions to integrals, is widely used in many fields of science and engineering. A conve-
nient and popular choice is a quadrature rule that uses point evaluations of a function
f :

Z

�
f(x)!(x)dx ⇡

n
X

j=1

f(xj)wj ,

where � is some set in d-dimensional Euclidean space d, ! is a positive weight
function, and xj and wj are the nodes and weights, respectively, of the quadrature
rule that must be determined. The main desirable properties of quadrature rules
are accuracy for a broad class of functions, a small number n of nodes/weights, and
positivity of the weights. (Positive weights are desired so that the absolute condition
number of the quadrature rule is controlled.)

In one dimension, Gaussian quadrature rules [29, 44] satisfy many of these desir-
able properties, but computing an e�cient quadrature rule (or “cubature” rule) for

⇤Submitted to the journal’s Methods and Algorithms for Scientific Computing section July 10,
2017; accepted for publication (in revised form) April 17, 2018; published electronically July 3, 2018.

http://www.siam.org/journals/sisc/40-4/M113787.html
Funding: This work was supported by ARL under Cooperative Agreement W911NF-12-2-0023.

The work of the first and third authors was partially supported by AFOSR FA9550-15-1-0467. The
work of the third author was partially supported by DARPA EQUiPS N660011524053. The views
and conclusions contained in this document are those of the authors and should not be interpreted
as representing the o�cial policies, either expressed or implied, of ARL or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

†Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
(vkeshava@sci.utah.edu).

‡School of Computing, University of Utah, Salt Lake City, UT 84112 (kirby@sci.utah.edu).
§Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (akil@sci.utah.edu).

A2033

A2034 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

higher dimensions is a considerably more challenging problem. When � and ! are
of tensor-product form, one straightforward construction results from tensorization
of univariate quadrature rules. However, the computational complexity required to
evaluate f at the nodes of a tensorized quadrature rule quickly succumbs to the curse
of dimensionality.

Substantial progress has been made in constructing attractive multivariate quadra-
ture rules. Sparse grids rely on a sophisticated manipulation of univariate quadra-
ture rules [7, 16]. Quasi-Monte Carlo methods generate sequences that have low-
discrepancy properties [33, 34, 37]. Mathematical characterizations of quadrature
rules with specified exactness on polynomial spaces yield e�cient nodes and weights
[5, 9, 42, 56].

The main contribution of this paper is a systematic computational approach for
designing multivariate quadrature rules with exactness on general finite-dimensional
polynomial spaces. Using polynomial exactness as a desideratum for constructing
quadrature rules is not the only approach one could use (e.g., quasi-Monte Carlo
methods do not adopt this approach). However, when the integrand f can be accu-
rately approximated by a polynomial expansion with a small number of significant
terms, then approximating the integral with a quadrature rule that is designed to
integrate the significant terms can be very e�cient [10, 11]. In particular, finite-
dimensional polynomial spaces can well-approximate solutions to some parametric
operator equations [12], and empirical tests with many engineering problems show
that polynomial approximations are very e�cient [1, 2, 8].

Our computational approach revolves around optimization; many algorithms for
computing nodal sets via optimization have already been proposed [29, 30, 36, 45, 46,
48, 53]. Our method, which we call designed quadrature, has the following advantages:

• we can successfully compute nodal sets in up to 100 dimensions;
• positivity of the weights is ensured;
• quadrature rules over nonstandard geometries can be computed; and
• a prescribed polynomial accuracy can be sought over general polynomial
spaces, not restricted to, e.g., total degree spaces.

Our approach is simple: we formulate moment-matching conditions and geometric
constraints that prescribe nonlinear conditions on the nodes and weights. This direct
formulation allows significant flexibility with respect to geometry, weight function
!, and polynomial accuracy. Indeed, our procedures can compute quadrature rules
with hyperbolic cross-polynomial spaces (section 4.5) and can constrain nodal loca-
tions to awkward geometries (see section 4.4). Our computational approach is to use
constrained optimization algorithms to compute a quadrature rule from the moment-
matching conditions. Our mathematical analysis provides a stability bound on error
of the quadrature rule if the moment-matching conditions are violated (e.g., due to
numerical finite precision). We apply our designed quadrature rules to several realistic
problems in computational science, including problems in linear elasticity and topol-
ogy optimization. Comparisons against competing methods, such as sparse grids and
low-discrepancy sequences, illustrate that designed quadrature often attains superior
accuracy with many fewer nodes.

Our procedure is not without shortcomings: Being a direct moment-matching
problem, our framework relies on large-scale optimization in high dimensions. For a
specified polynomial subspace on which we require integration accuracy, we cannot
a priori determine the number of nodes that our procedure will produce (although
we review some theory that provides upper and lower bounds for n). We likewise
cannot ensure that our algorithm produces an optimal quadrature rule size, but our

DESIGNED QUADRATURE A2035

numerical results suggest favorable comparison with alternative techniques; see section
4.2. Some of the optimization tools we use have tunable parameters; we have made
automated choices for these parameters but leave to future work proving that the
algorithm performs well for arbitrary dimensions, weight functions, or polynomial
spaces.

This paper is organized as follows. In section 2 we discuss the mathematical
setting and formulate the optimization problem. This section also presents theory
for the requisite number of nodes and stability of quadrature rules for approximate
moment-matching. Section 3 details the computational framework for generating
designed quadrature rules. Numerical results are shown in section 4.

2. Multivariate quadrature.

2.1. Notation. Let ! be a given nonnegative weight function (e.g., a probability
density function) whose support is � ⇢ d, where d � 1 and � need not be compact.
A point x 2 d has components x =

�

x

(1)
, x

(2)
, . . . , x

(d)
�

. The space L2
!(�) is the set

of functions f defined by

L

2
!(�) =

�

f : � !
�

� kfk < 1

, kfk2 = (f, f) , (f, g) =

Z

�
f(x)g(x)!(x)dx.

We use standard multi-index notation: ↵ 2 d
0 denotes a multi-index, and ⇤ a

collection of multi-indices. We have

↵ = (↵1, . . . ,↵d), x

↵ =
d
Y

j=1

⇣

x

(j)
⌘↵j

, |↵| =
d
X

j=1

↵j .

We impose a partial ordering on multi-indices via componentwise comparisons: with
↵, � 2 d

0, then ↵ � if and only if all componentwise inequalities are true. A
multi-index set ⇤ is called downward closed if

↵ 2 ⇤ =) � 2 ⇤ 8 � ↵.

We assume throughout this paper that the weight function has finite polynomial
moments of all orders:

Z

�
(x↵)2 !(x) < 1, ↵ 2 d

0.

This assumption ensures existence of polynomial moments. Our ultimate goal is to
construct a set of n points {xq}nq=1 ⇢ � and positive weights wq > 0 such that

I(f) =

Z

�
f(x)!(x)dx ⇡

n
X

q=1

wqf(xq)(1a)

for functions f within a “large” class of functions. We attempt to achieve this by
enforcing equality above for f in a subspace ⇧ of polynomials:

Z

�
f(x)!(x)dx =

n
X

q=1

wqf(xq), f 2 ⇧.(1b)

The quadrature strategy is accurate if f can be well-approximated by a polynomial
from ⇧. There are numerous technical conditions on ⇧ and f that yield quantitative

A2036 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

statements about polynomial approximation accuracy; see, e.g., [3]. In this article,
we assume that ⇧ is given and fixed through some a priori study ensuring that there
exists a polynomial in ⇧ that accurately approximates f to within some user-specified
tolerance. Typically we will define ⇧ through some finite multi-index set ⇤:

⇧ = span
�

x

↵

�

�

↵ 2 ⇤

.

In many applications, the function f typically exhibits smoothness (e.g., inte-
grable high-order derivatives), which in turn implies that polynomial approximations
converge at a high order with respect to the degree of approximation. Under the
assumption that f is smooth, we therefore expect that the integral of a polynomial
that approximates f is a good approximation if the approximating polynomial space
⇧ contains high-degree polynomials. Our main goal in this paper is then familiar
when viewed through the lens of classical analysis: make ⇧ as large as possible while
keeping n as small as possible.

Two particularly popular choices for polynomial spaces ⇧ can be defined by the
index sets

⇤Tr =
�

↵ 2 d
0

�

� |↵| r

, ⇤Hr =

8

<

:

↵ 2 d
0

�

�

d
Y

j=1

(↵j + 1) r + 1

9

=

;

for some nonnegative integer r. Both of these multi-index sets are downward closed.
The total order and hyperbolic cross-polynomial subspaces are defined by, respectively,

⇧Tr = span
�

x

↵

�

�

↵ 2 ⇤Tr

, ⇧Hr = span
�

x

↵

�

�

↵ 2 ⇤Hr

.(2)

The algorithm we present in this paper applies to general polynomial spaces, but
our numerical examples will focus on the spaces above since they are common in
large-scale computing problems.

2.2. Univariate rules: Gauss quadrature. When � ⇢ , the optimal quadra-
ture rule is provided by the !-Gauss quadrature rule. In one dimension, we use the
shorthand ⇧k = ⇧Tk . The first step in defining this rule is to prescribe an orthonormal
basis for ⇧k. A Gram–Schmidt argument implies that such a basis of orthonormal
polynomials exists with elements pm(·), where deg pm = m. All univariate orthonor-
mal polynomial families satisfy the three-term recurrence relation,

xpm(x) =
p

bmpm�1(x) + ampm(x) +
p

bm+1pm+1(x),(3)

for m � 0, with p�1 ⌘ 0 and p0 ⌘ 1/
p
b0 to seed the recurrence. The recurrence

coe�cients are given by

am = (xpm, pm), bm =
(pm, pm)

(pm�1, pm�1)

for m � 0, with b0 = (p0, p0). Classical orthogonal polynomial families, such as the
Legendre and Hermite polynomials, fit this mold with explicit formula for the an and
bn coe�cients [44]. Gaussian quadrature rules are n-point rules that exactly integrate
polynomials in ⇧2n�1 [39, 14].

Theorem 2.1 (Gaussian quadrature). Let x1, . . . , xn be the roots of the nth or-

thogonal polynomial pn(x), and let w1, . . . , wn be the solution of the system of equa-

tions

(4)
n
X

q=1

pj(xq)wq =

(p
b0 if j = 0,

0 for j = 1, . . . , n� 1.

DESIGNED QUADRATURE A2037

Then xq 2 � and wq > 0 for q = 1, 2, . . . , n and

(5)

Z

�
!(x)p(x)dx =

n
X

q=1

p(xq)wq

holds for all polynomials p 2 ⇧2n�1.

Historically significant algorithmic strategies for computing Gauss quadrature
rules are given in [15, 18]. The elegant linear algebraic formulations described in these
references compute the quadrature rule with knowledge of only of a finite number of
recurrence coe�cients an, bn.

2.3. Multivariate polynomials. If � and !(x) are both tensorial, then the
generalization of univariate orthogonal polynomials to multivariate ones is straight-
forward. The tensorial structure implies

� = ⇥d
j=1�j , !(x) =

d
Y

j=1

!j

⇣

x

(j)
⌘

for univariate domains �j ⇢ and univariate weights !j(·). If p(j)n (·) is the univariate
orthonormal polynomial family associated with !j over �j , then

⇡

↵

(x) =
d
Y

j=1

p

(j)
↵j

⇣

x

(j)
⌘

, ↵ 2 d
0,(6)

defines a family of multivariate polynomials orthonormal under !, i.e., (⇡
↵

,⇡

�

) =
�

↵,�, where � is the Kronecker delta. The polynomial spaces in (2) can be written as

⇧Tr = span
�

⇡

↵

�

�

↵ 2 ⇤Tr

, ⇧Hr = span
�

⇡

↵

�

�

↵ 2 ⇤Hr

.

The following result is the cornerstone of our algorithm.

Proposition 2.2. Let ⇤ be a multi-index set with 0 2 ⇤. Suppose that x1, . . . ,xn

and w1, . . . , wn are the solution of the system of equations

(7)
n
X

q=1

⇡

↵

(xq)wq =

(

1/⇡0 if ↵ = 0,

0 if ↵ 2 ⇤\{0};

then

(8)

Z

�
!(x)⇡(x)dx =

n
X

q=1

⇡(xq)wq

holds for all polynomials ⇡ 2 ⇧⇤.

The proof is straightforward by noting that
R

� ⇡↵

(x)!(x)dx = 0 when ↵ 6= 0 due
to orthogonality, and thus (7) is a moment-matching condition. Unlike Theorem 2.1,
this multivariate result does not guarantee the positivity of weights, nor does it ensure
that the nodes lie in �. We enforce these conditions in our computational framework
in section 3. Finally, we note that Proposition 2.2 is true even when � and ! are not
tensorial. We concentrate on the tensorial situation in this paper because a tensorial
assumption is standard for large dimension d.

A2038 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

One of the main uses of quadrature rules is in the construction of polynomial
approximation via discrete quadrature. If f is a given continuous function and ⇥ is a
given multi-index set, then

f(x) ⇡ f⇥(x) =
X

↵2⇥

b

f

↵

⇡

↵

(x), b

f

↵

=
n
X

q=1

⇡

↵

(xq) f (xq)wq,(9)

where bf
↵

are meant to approximate the Fourier (L2
!-projection) coe�cients of f .

Ideally, if f 2 ⇧⇥, then f⇥ = f ; i.e., this construction reproduces polynomials in ⇧⇥.
As one expects, this only happens when the quadrature rule is su�ciently accurate,
as defined by the size of ⇤ in (7).

Proposition 2.3. Let ⇤ be a downward-closed multi-index set, and suppose that

xq and wq for q = 1, . . . , n define a quadrature rule satisfying (7). Let ⇥ be any index

set satisfying

⇥+⇥ =
�

↵+ �

�

�

↵,� 2 ⇥

✓ ⇤.(10)

If f 2 ⇧⇥, then f⇥ defined in (9) satisfies f⇥ = f .

Proof. Suppose f 2 ⇧⇥, so that

f(x) =
X

↵2⇥

f

↵

⇡

↵

(x), f

↵

= (f,⇡
↵

) ,

where the formula for the coe�cients f

↵

is due to orthogonality. We will show that
the computed quadrature coe�cients bf

↵

defined in (9) satisfy bf
↵

= f

↵

. Fix � 2 ⇥.
Then

f(x)⇡
�

(x) =
X

↵2⇥

f

↵

⇡

↵

(x)⇡
�

(x).

There are coe�cients c
↵,� such that

⇡

↵

=
X

�↵

c

↵,�x
�

.

Therefore,

⇡

↵

(x)⇡
�

(x) =

0

@

X

�↵

c

↵,�x
�

1

A

0

@

X

��

c

�,�x
�

1

A =
X

�↵+�

d

↵,�,�x
�

for some coe�cients d
↵,�,� . The index ↵+� 2 ⇤ owing to the assumption (10), and

since ⇤ is downward closed, then we have that ⇡

↵

(x)⇡
�

(x) 2 ⇧⇤. Therefore, the
n-point quadrature rule integrates ⇡

↵

(x)⇡
�

(x), and thus

b

f

�

=
n
X

q=1

f(xq)⇡�

(xq) =
X

↵2⇥

f

↵

n
X

q=1

⇡

↵

(x)⇡
�

(x) =
X

↵2⇥

f

↵

(⇡
↵

,⇡

�

) = f

�

.

Since bf
�

= f

�

, then f⇥ = f .

DESIGNED QUADRATURE A2039

The notion above of reproduction of multivariate polynomials is consistent with
univariate Gauss quadrature: In one dimension with an n-point Gauss quadrature
rule, we can reproduce polynomials up to degree n � 1: Take ⇤ = {0, . . . , 2n� 1},
and choose ⇥ = {0, . . . , n� 1}. The polynomial f⇥ constructed by the procedure
(9) matches the function f if f 2 ⇧⇥ since ⇥ + ⇥ ⇢ ⇤. The above result codifies
this condition in the multivariate case. Note that ⇥ ⇢ ⇤ is not a strict enough
condition since the approximate Fourier coe�cients defined in (9) will not necessarily
be accurate. We also note that the integrand is a product of polynomials; therefore
requiring exactness on polynomial products is the correct condition, hence the ⇥+⇥ ⇢
� requirement.

Given a multi-index set ⇤, there is a smallest possible quadrature size n such that
(7) holds. This smallest n is given by the size of the largest ⇥ satisfying (10).

Theorem 2.4 ([24]). Let ⇤ be a downward-closed index set. The size n of any

quadrature rule satisfying (7) has lower bound

n � L(⇤) := max
�

|⇥|
�

� ⇥+⇥ ✓ ⇤

.

The number L(⇤) defined above is called the maximal half-set size in [24], and
a corresponding L(⇤)-point quadrature rule is a minimal rule. In that reference,
concrete examples of (i) nonexistence, and (ii) existence but nonuniqueness of min-
imal multivariate quadrature rules achieving the lower bound above are shown. If
⇤ = ⇤2n�2 in the univariate case, Gaussian quadrature rules are nonunique. Our nu-
merical algorithm essentially seeks to find minimal rules, but we can rarely find such
quadrature rules. However, our generated quadrature rule sizes are only modestly
larger than the optimal L(⇤).

2.4. Quadrature stability. Gaussian quadrature rules defined by Theorem 2.1
can be computed via linear algebra, but multivariate quadrature rules defined by
(7) have no known analogous computational simplification. In order to solve this
nonlinear system of equations we utilize Newton’s method. We therefore expect that
(7) is not exactly satisfied by the computed solution, or it is satisfied to within some
tolerance.

Fixing a downward-closed index set ⇤ with size M = |⇤|, consider the matrix
X 2 d⇥n whose n columns are the samples xj , and letw 2 n be a vector containing
the n weights. Let V (X) 2 n⇥M denote the Vandermonde-like matrix with entries

(V)k,j = ⇡

↵(k) (xj) , j = 1, . . . , n, k = 1, . . . ,M,(11)

where we have introduced an ordering ↵(1), . . .↵(m) on the elements of ⇤. We assume
↵(1) = 0, but the remaining ordering of elements is irrelevant. The system (7) can
then be written as

V (X)w = e1/⇡0,

where e1 = (1, 0, 0, . . . , 0)T 2 M is a cardinal unit vector. Instead of achieving the
equality above, our computational solver computes an approximate solution (X,w)
to the above system, satisfying

(12) kV (X)w � e1/⇡0k2 = ✏ � 0.

Our next result quantifies the e↵ect of the residual ✏ on the accuracy of the designed
quadrature rule. To prove this result, we require the additional assumption that the
quadrature weights are positive, which is enforced in our computations.

A2040 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

Proposition 2.5. Let !(x) be a probability density function on �, and let ⇤ be

any multi-index set containing 0 (i.e., ⇧⇤ contains constant functions). Assume that

(X,w) satisfies (12) with some ✏ � 0, and assume the weights are all positive. Then

for any f 2 L

2
!(�),

�

�

�

�

�

Z

f(x)!(x)dx�
n
X

q=1

wqf(xq)

�

�

�

�

�

 ✏ kfk+ max
j=1,...,n

|f(xj)� p(xj)| ,(13)

where p 2 ⇧⇤ is the L

2
!(�)-orthogonal projection of f onto ⇧⇤.

This result does apply to all our computed designed quadrature rules since we
enforce positivity of the weights. It is not applicable to other polynomial-based rules
where weights can be negative, such as sparse grids.

Proof. For an arbitrary p 2 ⇧⇤, the following holds:

p(x) =
X

↵2I
p

↵

⇡

↵

(x), p

↵

= (p,⇡
↵

) ,(14)

and thus kpk2 = (p, p) =
P

↵2⇤ p

2
↵

. We have

�

�

�

�

�

Z

�
f(x)!(x)dx�

n
X

q=1

wqf (xq)

�

�

�

�

�

�

�

�

�

Z

�
(f(x)� p(x))!(x)dx

�

�

�

�

| {z }

(a)

+

�

�

�

�

�

n
X

q=1

(p(xq)� f(xq))wq

�

�

�

�

�

| {z }

(b)

(15)

+

�

�

�

�

�

Z

�
p(x)!(x)dx�

n
X

q=1

wqp(xq)

�

�

�

�

�

| {z }

(c)

.

We now choose p as the L

2
!(�)-orthogonal projection of f into ⇧⇤:

p = argmin
q2⇧⇤

kf � qk =)
Z

�
[f(x)� p(x)]�(x)!(x)dx = 0 8 � 2 ⇧⇤.(16)

Since 0 2 ⇤, the above holds in particular for �(x) ⌘ 1 so that

(a) =

�

�

�

�

Z

�
(f(x)� p(x))!(x)dx

�

�

�

�

= 0.

Term (b) can be bounded as

(b)
n
X

q=1

|wq| |p(xq)� f(xq)| max
q=1,...,n

|p(xq)� f(xq)| ,

where the last inequality uses the fact that
PN

q=1 |wq| =
PN

q=1 wq =
R

� !(x)dx = 1
since the weights are positive and ! is a probability density. Finally, term (c) can be
bounded as follows: Since p 2 ⇧⇤ then by (14),

n
X

q=1

wqp(xq) =
n
X

q=1

X

↵2⇤

wqp↵⇡↵

(xq) =
X

↵2⇤

p

↵

n
X

q=1

wq⇡↵

(xq)

!

.

DESIGNED QUADRATURE A2041

The term in parenthesis on the right-hand side is an entry in the vector V (X)w from
the relation (12); note also that b⇡

↵

(cf. (9)) equals an entry in the vector b. Therefore,
combining the above equation and using the Cauchy–Schwarz inequality yields

(c)=

�

�

�

�

�

Z

�
p(x)!(x)dx�

n
X

q=1

wqp(xq)

�

�

�

�

�

=

�

�

�

�

�

X

↵2⇤

p

↵

Z

�
⇡

↵

(x)!(x)dx�
n
X

q=1

wq⇡↵

(xq)

!

�

�

�

�

�

=

�

�

�

�

�

X

↵2⇤

p

↵

�

↵,0/⇡0�
n
X

q=1

wq⇡↵

(xq)

!

�

�

�

�

�

s

X

↵2⇤

p

2
↵

kV (X)w�e1/⇡0k ✏ kpk ✏kfk,

where the final inequality is Bessel’s inequality, which holds since we have chosen p

as in (16). Combining our estimates for terms (a), (b), and (c) in (15) completes the
proof.

Relative to the pointwise error committed by best L

2
!(�) approximations, the

estimate provided by Proposition 2.5 bounds the quadrature error in terms of the
quantity ✏, which is explicitly computable given a quadrature rule.

2.5. A popular alternative: Sparse grids. A (Smolyak) sparse grid is a
structured point configuration in multiple dimensions, formed from unions of ten-
sorized univariate rules. Quadrature weights often accompany points in a sparse grid.
We briefly describe sparse grids for polynomial integration in this section; they will
be used for comparison in our numerical results section.

Consider a tensorial � as in section 2.3, and for simplicity assume that the uni-
variate domains �j = �1 are the same and that the univariate weights !j = !1 are the
same. Let Xi denote a univariate quadrature rule (nodes and weights) of “level” i � 1,
and define X0 = ;. The number of points ni in the quadrature rule Xi is increasing
with i, but can be freely chosen. For multi-index i 2 d, a d-variate tensorial rule
and its corresponding weights are

(17) Ad,i = Xi1 ⌦ · · ·⌦ Xid , w

(q) =
d
Y

r=1

w

(qr)
ir

.

The univariate di↵erence operator between sequential levels is written as

�i = Xi � Xi�1, i � 1,(18)

and for any k 2 , this approximation di↵erence can be used to construct a d-variate,
level-k-accurate sparse grid operator [7, 38],

Ad,k =
k�1
X

r=0

X

i2 d

|i|=d+r

�i1 ⌦ · · ·⌦�id =
k�1
X

r=k�d

(�1)k�1�r

✓

d� 1

k � 1� r

◆

X

i2 d

|i|=d+r

Xi1 ⌦ · · ·⌦ Xid ,

(19)

where the latter equality is shown in [52]. If the univariate quadrature rule Xi exactly
integrates univariate polynomials of order 2i � 1 or less, then the Smolyak rule Ad,k

is exact for d-variate polynomials of total order 2k � 1 [23]. One is tempted to use
Gauss quadrature rules for the Xi to obtain optimal e�ciency, but since the di↵erences
�i appear in the Smolyak construction, utilizing nested univariate rules instead can
generate sparse grids with many fewer nodes than nonnested constructions. One can

A2042 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

use, for example, nested Clenshaw–Curtis rules [55], the nested Gauss–Patterson or
Gauss–Kronrod rules [16, 26, 35], or Leja sequences [31].

Sparse grids have been used with great success in many modern applications, and
thus are good candidates for comparison against our approach of designed quadrature.
However, sparse grids that integrate polynomials in a certain multi-index set use far
more points than the minimum number prescribed by Theorem 2.4 (see Figure 3 for an
empirical comparison) and frequently produce quadrature rules with negative weights.
Our results in section 4 show that designed quadrature uses many fewer points than
sparse grids for a given accuracy level, and guarantees positive quadrature weights.

3. Computational framework. Our procedure aims to compute nodes X =
{x1, . . . ,xn} 2 �n and positive weights w 2 (0,1)n that enforce equality in (7). A
direct formulation of (7) is

(20)
R(d) = V (X)w � e1/⇡0 = 0,

xj 2 �, j = 1, . . . , n,
wj > 0, j = 1, . . . n,

where d = (X,w) are the decision variables. Instead of directly solving this con-
strained root finding problem, we introduce a closely related constrained optimization
problem:

(21)

min
X,w

||R||2
subject to xj 2 �, j = 1, . . . , n,

wj > 0, j = 1, . . . , n.

Clearly a solution to (20) also solves (21), but the reverse is not necessarily true.
We compute solutions to (21), and when these solutions exhibit large nonzero values
of kRk, we increase the quadrature rule size n and repeat. Using this strategy, we
empirically find that for a specified ✏ we can satisfy kRk ✏ in all situations we have
tried. Thus, our approach solves a relaxed version of (20) via repeated applications
of (21). Our computational approach to solve (21) requires four major ingredients,
each of which is described in the subsequent sections:

Section 3.1 – Penalization: objective augmentation, transforming constrained root
finding into unconstrained minimization problem.

Section 3.2 – Iteration: unconstrained minimization via the Gauss–Newton algo-
rithm.

Section 3.3 – Regularization: numerical regularization to address ill-conditioned
Gauss–Newton update steps.

Section 3.4 – Initialization: specification of an initial guess.
We highlight above that regularization is required for our optimization. The objective
R in (21) is highly ill-conditioned as a function of the decision variables. Without
regularization, the update steps specified by the Gauss–Newton algorithm generally
do not result in convergence. However, with the regularization, we have found that
our optimization results in steps with a decreasing residual. These observations can
be corroborated by the numerical results in section 4, and in particular Table 2, which
lists CPU time and iterations required for computing 4-dimensional rules.

Since our algorithm only minimizes the norm of R, the quadrature rule we com-
pute is not guaranteed to integrate any polynomials exactly, only up to some tolerance
parameter ✏ � kRk. This is the utility of Proposition 2.5: if our optimization algo-
rithm terminates with a particular value of ✏, we have a quantitative understanding

DESIGNED QUADRATURE A2043

of how ✏ a↵ects the quality of the quadrature rule relative to best L2-approximating
polynomials.

Since we produce a quadrature rule that is only ✏-exact, there may be many
quadrature rules that achieve this tolerance. In particular, our algorithm is not guar-
anteed to produce optimal quadrature rules, but in comparison with some other tab-
ulated rules from [40, 43, 53, 54], we find that our nodal counts are no greater than in
those references. There is one lone exception for integrating degree-8 polynomials in
three dimensions, where we find a rule with one point greater than reported in [53].
Details are in section 4.2 and in Table 1.

Finally, our algorithm is subject to the same limitations as many other minimiza-
tion algorithms: it may only find a local minimum of the objective, and not a global
minimum.

3.1. Penalization. Penalty methods are techniques for solving constrained op-
timization problems such as (21). Penalty methods augment the objective with a high
cost for violated constraints, and subsequently solve an unconstrained optimization
problem on the augmented objective.

We use a popular penalty function, the nonnegative and smooth quadratic func-
tion. For example, in d = 1 dimensions on � = [�1, 1] with an n-point quadrature
rule, the constraints and corresponding penalties Pj , j = 1, . . . , (d + 1)n = 2n, as a
function of the 2n decision variables d = (X,w) can be expressed as

�1 xj 1 =) Pj (d) = (max[0, xj � 1,�1� xj])
2
,

wj � 0 =) Pn+j (d) = (max[0,�wj])
2

for j = 1, . . . , n. The total penalty associated with the constraints is then

P

2 (d) =

(d+1)n
X

j=1

P

2
j (d) .

A penalty function approach to solving the constrained problem (21) uses a se-
quence of unconstrained problems indexed by k 2 having objective functions

g (ck,d) :=
�

�

�

e

Rk

�

�

�

2

2
= kRk22 + c

2
kP

2 (d) ,(22)

where we have defined the vector

e

Rk =

2

6

6

6

6

6

4

R

ckP1

ckP2
...

ckP(d+1)n

3

7

7

7

7

7

5

.

The positive constants ck are monotonically increasing with k, i.e., ck+1 > ck. Each
unconstrained optimization yields an updated solution point d

k, and as ck ! 1
the solution point of the unconstrained problem will converge to the solution of the
constrained problem. The following lemma, adopted from [28], is used to show con-
vergence of the penalty method.

Lemma 3.1. Let d

k
be the minimizer for g(ck, ·) and ck+1 > ck. Then

g(ck,d
k) g(ck+1,d

k+1), P (dk) � P (dk+1), ||R(dk)|| ||R(dk+1)||.

A2044 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

Furthermore, let d

⇤
be a solution to problem (21). Then, for each k,

||R(dk)|| g(ck,d
k) ||R(d⇤)||.

The above lemma denotes that the sequence of g(ck,dk) is nondecreasing and
bounded above by the optimal objective value of the constrained optimization prob-
lem. The following theorem establishes the global convergence of the penalty method.
More precisely it verifies that any limit point of the sequence is a solution to (21).

Theorem 3.2 ([28]). Let {dk}, k 2 , be a sequence of minimizers of (22).
Then any limit point of the sequence is a solution to problem (21), i.e., limk2 P (dk) =
0 and limk2 ||R(dk)|| ||R(d⇤)||.

The above theorem shows both that a limit point denoted by d̄ is a feasible
solution since P (d̄) = 0, and that it is optimal since ||R(d̄)||22 ||R(d⇤)||22.

We can now formulate an unconstrained minimization problem with a sequence
of increasing ck on the objectives g in (22) for the decision variables d = (X,w),

min
d

g(ck,d),(23)

which replaces the constrained root finding problem (20).
It remains for us to specify how the constants ck are chosen: if d is the current

iterate for the decision variables, we use the formula

ck = max

⇢

A,

1

||R(d)||2

�

,

where A is a tunable parameter that is meant to be large. We use A = 103 in our
simulations. Also note that we never have ck = 1 so that our iterations cannot exactly
constrain the computed solution to lie in the feasible set. To address this in practice
we reformulate constraints to have nonzero penalty within a small radius inside the
feasible set. For example, instead of enforcing wj > 0, we enforce wj > 10�6.

Note that one may also consider barrier/interior point methods to enforce con-
straints; however, in our algorithm we find that penalty methods are more suitable in
transforming the constrained root finding problem to an unconstrained minimization
problem.

3.2. The Gauss–Newton algorithm. Having transformed the constrained
problem (21) into a sequence of unconstrained problems (23), we can now use standard
unconstrained optimization tools.

Two popular approaches for unconstrained optimization are gradient descent and
Newton’s method. Both approaches in the context of our minimization require the
Jacobian of the objective function with respect to the decision variables. We define

e

Jk =
@

e

Rk

@d

=

2

6

6

6

6

6

4

J

ck@P1/@d

ck@P2/@d

...
ck@P(d+1)n/@d

3

7

7

7

7

7

5

, J(d) :=
@R

@d

2 M⇥(d+1)n
,(24)

where @Pj

@d 2 1⇥(d+1)n is the Jacobian of Pj with respect to the decision variables.
With use of our quadratic penalty function, these penalty Jacobians are Lipschitz

DESIGNED QUADRATURE A2045

continuous in the decision variables, and easily evaluated since they are quadratic
functions. The matrix J has entries

(J)m,(i�1)d+j =
@⇡

↵(m) (xi)

@x

(j)
i

wi, (J)m,nd+i = ⇡

↵(m) (xj) ,(25)

for m = 1, . . . ,M , i = 1, . . . , n, and j = 1, . . . , d. Above, we define ⇡

↵(m) as in (11).
Computing entries of the Jacobian matrix J is straightforward: Assuming the basis
⇡

↵

is of tensor-product form (see section 2.3), we then need only compute derivatives
of univariate polynomials. A manipulation of the three-term recurrence relation (3)
yields the recurrence

p

bm+1p
0
m+1(x) = (x� am)p0m(x)�

p
bmp

0
m�1(x) + pm(x).

The partial derivatives in J may be evaluated using the relation above along with (6).
We index iterations with k, which is the same k as that defining the sequence

of unconstrained problems (23). Thus, our choice of ck changes at each iteration.
Gradient descent proceeds via iteration of the form

d

k+1 = d

k � ↵

@k eRkk2
@d

,

@k eRkk2
@d

=
e

J

T
k
e

R

k eRkk2
,

with ↵ a customizable step length that is frequently optimized via, e.g., a line-search
algorithm. In contrast, a variant of Newton’s root finding method applied to rectan-
gular systems is the Gauss–Newton method [39], having update iteration

d

k+1 = d

k ��d, �d =
⇣

e

J

T
k
e

Jk

⌘�1
e

J

T
k
e

Rk,(26)

where both e

Jk and e

Rk are evaluated at d

k. The iteration above reduces to the
standard Newton’s method when the system is square, i.e., M = n(d+ 1). Newton’s
method converges quadratically to a local solution for a su�ciently close initial guess
d

0, versus the gradient descent, which has linear convergence [4]. We find that Gauss–
Newton iterations are robust for our problem.

Assuming an initial guess d0 is given, we can repeatedly apply the Gauss–Newton
iteration (26) until a stopping criterion is met. We terminate our iterations when the

residual norm falls below a user-defined threshold ✏, i.e., || eR||2 < ✏.
A useful quantity to monitor during the iteration process is the magnitude of the

Newton decrement, which often reflects quantitative proximity to the optimal point
[6]. In its original form, the Newton decrement is the norm of the Newton step in
the quadratic norm defined by the Hessian. That is, for optimizing f(x), the Newton
decrement norm is ||�d||r2f(x) = (�d

Tr2
f(x)�d)1/2, where r2

f is the Hessian of
f . In our minimization procedure with nonsquare systems we use

(27) ⌘ =
�

�d

T (eJT
k
e

Rk)
�1/2

as a surrogate for a Hessian-based Newton decrement which decreases as d ! d

⇤.
Finally we note that, for a given quadrature rule size n, we cannot guarantee that

a solution to (20) exists. In this case our Gauss–Newton iterations will exhibit residual
norms stagnating at some positive value, while the Newton decrement is almost zero.
When this occurs, we reinitialize the decision variables and enrich the current set of
decision variables with additional nodes and weights and continue the optimization
procedure. This procedure of gradually increasing the number of nodes and weights
is described more in section 3.4.

A2046 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

3.3. Regularization. The critical part of our minimization scheme is the eval-
uation of Newton step (26). For our rectangular system, this is the least-squares
solution �d to the linear system

e

J�d = e

R,

where e

J = e

Jk

�

d

k
�

and e

R = e

Rk

�

d

k
�

; in this section we omit explicit notational

dependence on the iteration index k. The matrix e

J is frequently ill-conditioned,
which hinders a direct solve of the above least-squares problem. To address this we
can consider a generic regularization of the above equality:

(28) minimize
�d

|| eJ�d� e

R||p subject to ||�d||q < ⌧,

where p, q, and ⌧ are free parameters. The trade-o↵ between the objective norm and
the solution norm is characterized as a Pareto curve and shown to be convex in [50, 51]
for generic norms 1 (p, q) 1. Exploiting this Pareto curve, the authors in [50, 51]
devise an e�cient algorithm and implementation [49] for computing the regularized
solution when p = 2, q = 1. These values correspond to the LASSO problem [47],
which promotes solution sparsity and subset selection.

Since sparsity is not our explicit goal, we opt for p = q = 2. This problem can be
solved exactly [19], but at significant expense, and the procedure lacks clear guidance
on choosing ⌧ . We thus adopt an alternative approach. A penalized version of the
p = q = 2 optimization (28) is Tikhonov regularization:

(29) �d� = argmin
n

|| eJ�d� e

R||22 + �||�d||22
o

,

where � is a regularization parameter that may be chosen by the user. This parameter
has significant impact on the quality of the solution with respect to the original least-
squares problem. Assuming that we have a definitive value for �, then the solution to
(29) can be obtained via the singular value decomposition (SVD) of eJ . The SVD of

matrix e

JN⇥M (for N < M) is given by

(30) e

J =
N
X

i=1

ui�iv
T
i ,

where �i are singular values (in decreasing order), and ui and vk are the corresponding
left- and right-singular vectors, respectively. The solution �d� is then obtained as

(31) �d� =
N
X

i=1

⇢i
u

T
i
e

R

�i
vi,

where ⇢i are Tikhonov filter factors denoted by

(32) ⇢i =
�

2
i

�

2
i + �

2
'
(

1, �i � �,

�

2
i /�

2
, �i ⌧ �.

Tikhonov regularization a↵ects (or filters) singular values that are below the thresh-

old �. Therefore a suitable � is bounded by the extremal singular values of eJ . One
approach to select � is via analysis of the “L-curve” of singular values [20, 21]. The

DESIGNED QUADRATURE A2047

corner of the L-curve can be interpreted as the point with maximum curvature; evalu-
ation or approximation of the curvature with respect to the singular value index can be
used to find the index with maximum curvature, and the singular value corresponding
to this index prescribes �.

In practice, we evaluate the curvature of the singular value spectrum via finite
di↵erences on log(�i) (where the singular values are directly computed) and select the
singular value that corresponds to the first spike in the spectrum. The regularization
parameter can be updated after several, e.g., 30, Gauss–Newton iterations. How-
ever, for small-sized problems, i.e., small dimension d and |⇤|, a fixed appropriate �

throughout the Gauss–Newton scheme also yields solutions.
Based on our numerical observations, adding a regularization parameter to all of

the singular values and computing the regularized Newton step as�d�=
PN

i=1[(u
T
i
e

R)/

(�i + �)]vi enhances the convergence when d is close to the root, i.e., || eR|| is small.

3.4. Initialization. The first step of the algorithm requires an initial guess d

0

for nodes and weights; a particularly di�cult aspect of this is the initial choice of
quadrature rule size n. Our algorithm tests several values of quadrature rule sizes n
between an upper and lower bound; the determination of these bounds is described
below.

With the multi-index set ⇤ given, Theorem 2.4 provides a lower bound on the
value of n, and this lower bound L(⇤) is the optimal size for a quadrature rule. We are
unaware of su�cient conditions under which optimal quadrature rules exist. However,
optimal-sized quadrature rules have been shown in special cases, e.g., [41], for total
degree spaces ⇤Tk with k = 2, 3, 5. We have found that our algorithm is able to
recover these optimal-sized rules in the previously mentioned cases.

We formulate an upper bound on quadrature rule sizes based on a popular com-
petitor: sparse grid constructions. The number of sparse grid points |Ad,k| required
to satisfy (7) with ⇤ = ⇤Tk can be estimated as |Ad,k| ⇡ (2d)k�1

(k�1)! [13] for sparse grid
constructions with nonnested univariate Gauss quadrature rules. Tabulation of the
exact number of points for sparse grids constructed via univariate nested rules from
the Hermite and Legendre systems is provided in [22].

Our numerical results show that the number of designed quadrature nodes needed
to satisfy (7) is n = |Ad,k|, where 2 [0.5, 0.9] using |Ad,k| from [22]. We have
found that an e↵ective approach to choosing the number of points is to perform a
backtracking line-search procedure, which initializes = 0.9, solves the optimization
problem, and gradually decreases until the Gauss–Newton method does not converge
to a desirable tolerance. Our strategy for eliminating nodes when is decreased is to
discard those with the smallest weights.

After the initial pass that generates n nodes and weights achieving k eRk ✏, we
attempt to remove nodes with smallest weights as described previously. However, this
may cause the optimization to stagnate without achieving the desired tolerance. When
this happens, we enrich the nodal set by gradually adding more nodes until we can
achieve the tolerance. This process is repeated until the elimination and enrichment
procedures result in no change of the quadrature rule size; see Algorithm 1, lines 9–18.

Once an initial number of nodes n is determined (= 0.9), that number of d-
variate Monte Carlo samples or Latin hypercube samples are generated as the initial
nodes. This is easily done for the domain � = [�1, 1]d. Weights can be generated
uniformly at random [0, 1] with

P

i wi = |⇤| or set as a fixed value, e.g., wi = |⇤|/n.
We normalize the weights by |⇤| in the numerical procedure to avoid very small
weights. To accommodate for this, we can set 1/⇡0 = |⇤| in (20), and after we obtain

A2048 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

Algorithm 1 Designed quadrature.

1: Initialize nodes and weights d with n = 0.9|Ad,k| and specify the residual toler-
ance, e.g., ✏ = 10�8.

2: Set n0 = 0.
3: while || eR|| > ✏ do

4: Compute eR and e

J using (22), (20), (24), and (25).

5: Determine the regularization parameter � from the SVD of eJ .
6: Compute the regularized Newton step �d from (31).
7: Update the decision variables dk+1 = d

k ��d.
8: Compute the residual norm || eR||2 and Newton decrement ⌘ from (27).

9: if ⌘ < ✏ and || eR||2 � ✏ then
10: Increase n, initialize new nodes and weights, and go to line 3.
11: end if
12: end while
13: if n = n0 then
14: Return
15: else
16: n0 n.
17: Decrease n by eliminating nodes with smallest weights, and go to line 3. (See

discussion about in section 3.4.)
18: end if

a solution, we can renormalize the weights based on the true value of 1/⇡0.
On the domain � = d, we are usually concerned with the weight !(x) =

exp(�kxk22). Monte Carlo samples can be generated as realizations of a standard
normal random variable, and we transform Latin hypercube samples on [0, 1]d to d

via inverse transform sampling corresponding to a standard normal random variable.
(When ⇤ contains polynomials of very high degree, there are more sophisticated sam-
pling methods that can produce better initial guesses [32].) We initialize the weights
by setting wi = exp(�||xi||22/2) and normalizing wi with respect to |⇤| as described
above.

Algorithm 1 summarizes sections 3.1–3.4, including all the steps for our designed
quadrature method.

4. Numerical examples.

4.1. Illustrative numerical example in d = 2. In this example we consider
d = 2 for a uniform weight on � = [0, 1]2 with an r = 2 total degree polynomial space
with index set ⇤T2 . This index set has six indices, corresponding to six constraints
in (7). Using n = 3 nodes, there are (d+ 1)n = 9 decision variables. Note that exact
formulas for the optimal quadrature rule are known in this case [43]. The augmented

Jacobian eJ in (24) is a 15⇥9 matrix. We initialize three nodes with a Latin hypercube
design on [0, 1]2 and use uniform weights. The singular values of the Jacobian matrix
are shown in Figure 1 for the initial and final decision variables corresponding to
three di↵erent choices of the regularization parameter �. The results suggest that
any positive value in [0.01, 5] can be used as a regularization parameter. We use a
constant � throughout the iterations and fix the residual tolerance ✏ = 10�8. The
evolution of residual k eRk, Newton decrement ⌘, and penalty parameter ck is shown
in Figure 1. Smaller � values appear to yield faster convergence.

DESIGNED QUADRATURE A2049

1 4 7 9
i

0

2

4

6
7

σ
i

Initial
Final

1 4 7 9
i

0

2

4

6
7

σ
i

Initial
Final

1 4 7 9
i

0

2

4

6
7

σ
i

Initial
Final

1 2 3 4 5
k

10-20

100

1020

M
ag

ni
tu
de

||R̃||2
η

c

1 51 101 142
k

10-10

100

1010

||R̃||2
η

c

1 4 7 10 14
k

10-10

100

1010

||R̃||2
η

c

Fig. 1. Singular values of Jacobian eJ (cf. (24)) (top) and residual norm k eRk
2

, Newton decre-
ment ⌘, and penalty parameter c with respect to iterations k (bottom) for regularization parameter
� = 0.01 (left), � = 1 (middle), and � = 5 (right).

To visualize the optimal points for this quadrature, we randomize the initial
node positions and compute designed quadrature for 100 initializations. Plots of
the ensemble of converged quadrature rules in two and three dimensions are shown
in Figure 2. A set of 3 points (initial and final design) in each experiment forms a
triangle; i.e., vertices of each triangle are the quadrature points where each triangle is
visualized for di↵erentiation. The cumulative time for 100 designs took ⇠ 6 sec with
MATLAB on a single core personal desktop, and each design takes ⇠ 15 iterations
with � = 1.

4.2. Comparison with sparse grid quadrature. In this example we consider
the number of nodes required to achieve exact polynomial accuracy on total degree
spaces ⇤Tr of various orders and dimensions. Our goal is to compare designed quadra-
ture against sparse grids. The number of nodes required for exact integration on a
sparse grid is from [22]. Our tests fix dimension d = 3 and sweep values of the order r,
and fix r = 5 and sweep values of dimension d. We present the nodal counts in Table 1
and in Figure 3. Table 1 shows that designed quadrature consistently results in fewer
nodes than sparse grids for moderate values of r and d. We again emphasize that the
weights for designed quadrature are all positive, unlike sparse grid quadrature.

Figure 3 compares various node counts: The number of nodes in the product rule
is simply n

d, where n is the number of univariate Gauss quadrature nodes and the
“lower bound” is the value L(⇤) determined from Theorem 2.4. Using Theorem 2.1
in [24], we can explicitly compute this as

L (⇤Tr) =
�

�⇤Tbr/2c

�

� =

✓

d+ br/2c
d

◆

.(33)

Independently, we computed designed quadratures for r = 2 and r = 3 to confirm
that the number of nodes for di↵erent dimensions d coincides with d + 1 and 2d,
respectively, as determined in [41] (not shown). Also, for r = 5 and d = 3, 5 we find
the same number of nodes as those given by [40] with positive weights.

A2050 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

0
0.5

1

x(1)
0

0.5

1

x(2)

0

0.5

1
w

0.3
1

0.32

1

w

0.34

x(2)

0.5

x(1)

0.36

0.5
0 0

0 0.2 0.4 0.6 0.8 1
x(1)

0

0.2

0.4

0.6

0.8

1

x(
2)

0 0.2 0.4 0.6 0.8 1
x(1)

0

0.2

0.4

0.6

0.8

1

x(
2)

Fig. 2. Ensemble of 3-point quadrature rules on � = [0, 1]2 found via designed quadrature
(d = r = 2). Each 3-point nodal configuration has nodes connected with blue lines, forming a
triangle. Left: initial guesses provided to the algorithm. Right: converged designed quadrature rules.
Bottom: nodal configurations on �. Top: weight values plotted as z-coordinates. (Color available
online.)

Table 1
Number of node-n sparse grids and designed quadratures on total degree spaces ⇤

Tr on � =
[0, 1]d. Top: fixed d = 3 for various r. Bottom: fixed r = 5 for various d. The results in the top
half of this table can be compared with Table 4 in [53]. Our quadrature rules have smaller or equal
size compared with the results in [53], with the exception of r = 8, where we report a 43-point rule
instead of a 42-point rule in [53].

d = 3, r 1 2 3 4 5 6 7 8 9 10 11
Sparse grid quadrature (nested) 1 - 7 - 19 - 39 - 87 - 135

Designed quadrature 1 4 6 10 13 22 26 43 51 74 84

r = 5, d 1 2 3 4 5 6 7 8 9 10
Sparse grid quadrature (nested) 3 9 19 33 51 73 99 129 163 201

Designed quadrature 3 7 13 21 32 44 63 88 114 148

In Table 2 we show the performance of the scheme with respect to the number
of nodes and iterations, CPU time (measured with tic-toc on MATLAB), and the
achieved residual norm. To that end we consider d = 4 for di↵erent orders r and set
the tolerance to ✏ = 10�12 in this example. It should be noted that these quantitative
metrics can vary depending on the random initialization and regularization parameters
throughout the algorithm; however, they provide a useful holistic measure for the
method’s performance.

To illustrate how the regularization parameter � is chosen, we show the singular

DESIGNED QUADRATURE A2051

1 2 3 4 5 6 7 8 9 10 11
r

0

100

200

300

400
n

Lower bound
Des. Quad.
SG-KP
Prod. rule
SG-GQ

1 2 3 4 5 6 7 8 9 10
d

0

50

100

150

200

250

n

Lower bound
Des. Quad.
SG-KP
SG-GQ
Prod. rule

Fig. 3. Number of nodes for fixed d = 3 (left) and fixed r = 5 (right) for total order index set
⇤
Tr . The lower bound is given in (33), and “SG-KP” and “SG-GQ” are sparse grid constructions

using nested Kronrod–Patterson and nonnested Gauss quadrature rules, respectively.

Table 2
Performance of the scheme with respect to number of nodes and iterations, CPU time, and

residual norm for d = 4 and various orders r with total order index set.

d = 4, r 1 2 3 4 5 6 7 8 9 10
Half-set size |⇤

Tbr/2c | 1 5 5 15 15 35 35 70 70 126

Number of nodes 1 5 8 16 21 43 55 103 138 207
Number of iterations 10 9 11 56 179 146 298 153 461 197

CPU time (sec) 0.09 0.21 0.25 0.91 4.68 8.45 30.66 33.06 183.67 160.44
Residual norm ||R̃||

2

1e-14 2e-14 4e-13 8e-13 4e-13 9e-13 9e-13 3e-13 9e-13 9e-13

values and regularization parameter choice for the case r = 5, d = 7. Figure 4 shows
the regularization parameter selection for an iteration in the middle of the procedure.
The regularized parameter is selected as � = 10 by investigating the spectrum of
singular values and its L-curve.

In practice, one could fix � as a function of kRk2 (or k eRk2). In Figure 3, we have
� = 10 with kRk2 = 40. Then, for example, one could take � = 50 for 200 ||R||2
500 and � = 10 for 20 ||R||2 200. Such an a priori tabulation could be fixed for
a variety of (d, r) values.

4.3. Interpolation with designed quadrature. Designed quadrature rules
can be used to construct polynomial interpolants. Suppose we have a designed quadra-
ture rule (X,w) of size n that matches moments for indices on ⇤ (up to the tolerance
✏), and assume n = |⇤|.1 For continuous function f , let I(f) denote the unique inter-
polant of f from ⇧⇤ at the locations X. Lebesgue’s lemma states

||f � I(f)||1 (L+ 1) inf
p2⇧⇤

||f � p||1, L = sup
khk1=1

kI(h)k1 ,

where k ·k1 is the maximum norm on �, and the supremum is taken over all functions
h continuous on �. The constant L is the Lebesgue constant; small values indicate
that interpolants are comparable to the best approximation measured in the maximum
norm [27]. The Lebesgue constant can be computed explicitly: The interpolant I(f)

1Designed quadrature rules achieve n < |⇤|, but in this section we will enforce n = |⇤| for the
purposes of forming an interpolant.

A2052 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

1 100 200 300 400 500 600
i

-0.8

-0.6

-0.4

-0.2

0

∆
lo
g(
σ
i)

1 100 200 300 400 500 600
i

10-3
10-2
10-1
100

101
102
103

σ
i

10 20 40 50 70
||J̃∆dλ − R̃||2

10-5

100

105

||
∆
d
λ
||
2

1 50 100 150 200 250
k

10-10

10-5

100

105
M
ag

ni
tu
de

||R̃||2
η

Fig. 4. Singular values of eJ with the chosen regularization parameter (top left); finite di↵erence

on log of singular values and the chosen singular value index (top right); L-curve for the given eJ and
eR, where the circle indicates the point on the L-curve corresponding to the selected regularization
parameter � (bottom left); convergence of the scheme for d = 5, r = 7 (bottom right).

can be expressed as

I(f)(x) =
n
X

j=1

`j(x)f(xj), `j(xk) = �j,k,

where the `j are the cardinal interpolation functions. The Lebesgue function Ln and
the Lebesgue constant L are, respectively,

Ln(x) =
n
X

j=1

|`j(x)|, L = kLnk1.

Finding a set of points with minimal Lebesgue constant is not trivial. In d = 2
dimensions the Padua points are essentially the only explicitly constructible set of
nodes with provably minimal growth of Lebesgue constant on total degree spaces
[5]. To compare designed quadrature with Padua points, we consider degree-5 Padua
points, yielding dim⇧⇤T5

= 21. These points, along with associated quadrature
weights, integrate polynomials in ⇧⇤T9

exactly with respect to the product Chebyshev
weight ! [5].

With designed quadrature we are able to find 17 < 21 nodes and weights that
integrate polynomials in ⇧⇤T9

exactly. However, for the purposes of interpolation

DESIGNED QUADRATURE A2053

in this section, we enforce n = 21 nodes in the designed quadrature framework. To
initialize the design we start from nodes that are close to Padua nodes. The Lebesgue
function Ln(x) for both cases is shown in Figure 5. The Lebesgue constant for Padua
points and designed quadrature are L = 4.9478 and L = 5.1553, respectively. The
similar small values of L suggest that the designed quadrature points and the Padua
points are of comparable quality in terms of constructing interpolants. However, we
reiterate that for quadrature we can use fewer nodes (17) than the Padua points (21).

Fig. 5. Contour plots of Lebesgue function Ln for Padua points (left) and designed quadrature
(right).

4.4. Designed quadrature: U. The formulation of designed quadrature allows
� and ! to be of relatively general form, but we can construct quadrature rules in
even more exotic situations. Let � = [�1, 1]2 with ! the uniform weight. Instead of
enforcing xj 2 � in (21), we enforce xj 2 e�, where e� ⇢ � is a “U” shape, mimicking
the logo of the University of Utah; see Figure 6, left.

The penalty function for this problem has the same quadratic form as those
discussed in section 3.1 and separate penalties are considered for violations in both
the x

(1) and x

(2) directions. For example, we can model the infeasible rectangular
region S1 between the two ascenders of the U with nonzero penalty in the x(1) direction
and zero penalty in the x

(2) direction as

(34)

(

S1 : (0 |x(1)
1 | 0.4) \ (�0.35 x

(2) 0.95),

P1 = (x(1) � 0.4)2, P2 = 0.

A similar method can be used to penalize the semicircular region below the rectangle
where violations in both directions are penalized. The total penalty for infeasible
regions then involves both P1 and P2, e.g., P = 10

p
P1 + P2, which is shown in

Figure 6, right. We compute a designed quadrature rule for total degree r = 2,
achieving residual tolerance of ✏ = 0.0098 with n = 150. We need a relatively large
number of nodes and achieve only a relatively large tolerance (compared to ✏ = 10�8

for previous examples). This is due to the di�culty of this problem: We want nodes
to lie in e� but want to achieve integration over �. We expect that convergence for
larger r will require many iterations and may not be able to achieve arbitrarily small
tolerances.

4.5. Integration in high dimensions. To demonstrate the capability of de-
signed quadrature for integration in high dimensions, we consider d = 100 with hy-
perbolic cross index set ⇤Hr . Figure 7 (top) shows di↵erent slices of the d = 100

A2054 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

-1 -0.5 0 0.5 1
x(1)

-1

-0.5

0

0.5

1

x(
2)

1.5
10

0.51.5

x(2)

01
0.5

x(1)

-0.50
-0.5 -1

-1 -1.5-1.5

20P

40

Fig. 6. Designed quadrature for uniform weight and d = r = 2 with “U” shape indicating the
University of Utah (left); the penalty function used in the scheme (right).

nodal configuration generated by designed quadrature for the uniform weight on
� = [�1, 1]100 and r = 4, for which we have n = 106 and |⇤H4

| = 5351.
Figure 7 (bottom) shows the behavior of designed quadrature weights with re-

spect to the Euclidean norm of the nodes (distance to the origin) for ! the Gaussian
weight on � = 100 for total order r = 2 and hyperbolic cross orders r = 3, 4. As
expected, the weights decay as the node norms increase. We find n = 101 for all these
quadratures, again confirming the optimal n = d+1 size for total order r = 2 [54]. It
is also interesting to note that the minimum Euclidean norms of nodes for these cases
are somewhat equal, viz. ||x|| = 8.89, 8.93, 8.85, respectively.

Computing designed quadratures in high dimensions reveals computational chal-
lenges that are not present in small-to-moderate dimensions: Since the nonlinear
system is quite large, we do not perform the SVD of the Jacobian in each iteration.
Instead, we regularize the pseudoinverse matrix directly and compute the Newton
step as �d = (JT

J + �I)�1
J

T
R. The parameter � can be selected based on the

residual norm value, as explained in the previous section. The designed quadrature
algorithm for these cases in d = 100 took ⇠ 100 iterations and less than 30 minutes
on a personal desktop in MATLAB.

4.6. High-dimensional integration: Linear elasticity problem. To inves-
tigate the performance of the high-dimensional quadrature points, we compute the
mean and variance of compliance indicative of the elastic energy for a solid cantilever
beam with uncertain material properties.

The compliance for the spatial domain ⌦ reads

C =

Z

⌦
fud⌦,

where u is the displacement and f is the surface load on the structure. To find u,
the equation of motion in linear elasticity r.� + f = 0, where � is the stress tensor
and r is the divergence operator solved via the finite element method. The global
displacement is characterized with ne finite elements

u =
ne
X

i=1

ui i,

DESIGNED QUADRATURE A2055

-1 0 1
x(1)

-1

-0.5

0

0.5

1
x(
10

)

-1 0 1
x(10)

-1

-0.5

0

0.5

1

x(
50

)
-1 0 1

x(50)

-1

-0.5

0

0.5

1

x(
10

0)

0 50 100
||xi||2

0

0.005

0.01

0.015

w
i

0 25 50
||xi||2

0

0.005

0.01

0.015

w
i

0 25 50
||xi||2

0

0.005

0.01

0.015

w
i

Fig. 7. Top: di↵erent 2-dimensional slices of d = 100 designed quadrature for uniform weight
and hyperbolic cross order r = 4. Bottom: formation of weights with respect to Euclidean norm of
nodes for Gaussian weight in d = 100 for total order r = 2 (left) and hyperbolic cross orders r = 3
(middle) and r = 4 (right).

where i are finite element shape functions and ui are nodal displacements. The
nodal displacements U = {ui}ne

i=1 are solution of a linear system KU = F (stems
from the equation of motion), where

K =

Z

⌦

@ T

@x

C@

@x

d⌦,

F =

Z

⌦
f d⌦,

with C being an elasticity matrix. We consider the plane stress condition in this
example; hence for our 2-dimensional problem

C =
E

1� ⌫

2

2

6

4

1 ⌫ 0
⌫ 1 0

0 0
1� ⌫

2

3

7

5

,

where E is the modulus of elasticity and ⌫ is Poisson’s ratio.
The beam geometry is shown in Figure 8 and is modeled with 100 standard

square finite elements, where each element has lognormal modulus of elasticity as
Ei = 10�9+exp(⇠(i)). The random variables ⇠(i)|100i=1 are independent standard random
normal variables, and Poisson’s ratio is ⌫ = 0.3. Our goal is to compute first- and
second-order statistics of the compliance; these statistics are integrals with respect to
the 100 variables ⇠(i), and so we approximate these statistics via designed quadrature.

A2056 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

64 128 256 512
n

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
er

ro
r

QMC-Mean
QMC-Std
DQ-Mean
DQ-Std

Fig. 8. Finite element discretization for a linear elastic cantilever beam with random elastic
modulus (left) convergence of compliance mean and variance with quasi-Monte Carlo (QMC) samples
and designed quadrature (DQ) in d = 100 variables (right).

For comparison against designed quadrature we use quasi-Monte Carlo (QMC)
samples of size n = 64, 128, 256, 512 and n = 1024, where we treat the latter as
the exact solution. The QMC samples are generated on [0, 1]100 and are mapped to

100 using inverse transform sampling for a 100-dimensional standard normal random
vector. We have chosen the number of QMC samples so that they almost match the
number of designed quadrature nodes computed from (i) the index sets for total order
r = 2 and n = 101 nodes; (ii) the index set ⇤H4

[⇤2 with n = 155 nodes, where ⇤2

contains pairwise interactions of maximum univariate order 2; and (iii) the index set
⇤H4 [⇤3 with n = 255 nodes, where ⇤3 contains pairwise interactions of maximum
univariate order 3.

Figure 8 compares errors in the computed mean and standard deviation of the
compliance for QMC versus designed quadrature; we see that designed quadrature
achieves significantly better errors. We believe QMC would be more e↵ective if the
problem involved many more variables, larger index sets, and/or nonsmooth quan-
tities of interest, since in those cases the number of designed quadrature nodes is
prohibitively large and finding a suitable quadrature rule is computationally challeng-
ing.

4.7. Designed quadrature for topology optimization under uncertainty.
Our final example utilizes polynomial chaos (PC) methods [17] to build surrogates for
topology optimization under geometric uncertainty [25]. Figure 9 shows the flowchart
for design optimization under uncertainty. To build PC surrogates at each design
iteration, n finite element analysis (FEA) and sensitivity analyses are performed in
order to quantify the uncertainty associated with random variables ⇠(i) as in the last
example. This is the most costly step in the design process, and hence small n can
result in significant computational savings.

The perturbation in the boundary of topology interfaces Z are modeled via a
Karhunen–Loève random field with d = 4 significant modes as

(35) Z(x, ⇠) =
4
X

i=1

p

�i�
(i)(x)⇠(i),

where ⇠

(i) 2 U [�
p
3,
p
3] are independent uniform random variables. Sparse grids

DESIGNED QUADRATURE A2057

Design Optimization under Uncertainty

Gradient-Based Optimizer
✓

0
✓

⇤

Forward Model (FEA)
& Sensitivity Analysis

f(✓, ⇠i)|ni=1

@f(✓, ⇠i)

@✓

|ni=1

Surrogate Model (PCE)
+

Performance Metrics
& Their Sensitivities

µ(✓),�(✓)

@µ(✓)

@✓

,

@�(✓)

@✓

Random
Variables
⇠i|ni=1

Design
Variables
✓

Fig. 9. Design optimization under uncertainty flowchart.

built from nested rules were utilized in [25] to develop a surrogate for total degree r = 3
in d = 4 dimensions. This requires a quadrature rule that can accurately integrate
polynomials up to order r = 6 (see Proposition 2.3). A standard construction of sparse
grid rules yields odd orders of polynomial accuracy, and hence a quadrature rule for
r = 7 with n = 81 nodes is used. We observe that 33 out of these 81 nodes have
negative weights [22]. On the other hand, we use designed quadrature constrained
to integrate polynomials up to degree r = 6 and compute n = 43 nodes, almost half
(⇠ 53%) the number of sparse grid points (43/81 = 0.53), and in which all nodes have
positive weights. These nodes and weights are listed in Table 3.

We approximate the mean and variance for the final robust topology design of
the Messerschmitt–Bölkow–Blohm (MBB) beam shown in Figure 10 (left) with both
quadrature sets, and we use a sparse grid rule with n = 641 points (r = 13) as
the “true” solution. The mean and standard deviation for the true solution are
µtrue = 120.1032, �true = 0.7853, respectively. The mean and standard deviation
and the relative errors in mean eµ = |(µ � µtrue)/µtrue| and in standard deviation
e� = |(� � �true)/�true| are listed in Table 4. We achieve higher accuracy with
designed quadrature at nearly half the cost. Figure 10 also visually compares the
probability density function (PDF) of compliance for both cases, and no substantial
di↵erence is observed.

5. Concluding remarks. We present a systematic approach, designed quadra-
ture, for computing multivariate quadrature rules in generic settings. The framework
uses penalty methods in constrained optimization to ensure positivity of the weights
and feasible locations for the nodes. The Gauss–Newton algorithm is used to perform
minimization of the penalty-augmented objective function. L

2 regularization is uti-
lized to treat ill-conditioned systems encountered during Newton step updates. On
regular domains such as hypercubes, our designed quadrature results in considerably
fewer nodes (and guaranteed positive weights) compared to alternative multivariate
quadrature rules, such as sparse grids, and hence is promising for computational sci-
ence and engineering involving expensive simulations. When applied to a benchmark
robust topology optimization problem, designed quadrature reduces requisite cost by
nearly half compared with sparse grid rules, and achieves higher accuracy.

A2058 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

Table 3
Designed nodes and weights for uniform wight function associated with d = 4, r = 6.

x

(1)
x

(2)
x

(3)
x

(4)
w

0.257802083101815 -0.0703252346579532 0.962710865388279 0.430231485089995 0.0261815176727414
-0.816973940130726 -0.943714906761859 0.386890523282751 -0.999999000000035 0.00580285921526766
-0.947032046309044 0.989213881193871 0.936667215690650 -0.993786957614627 0.00249952956479966
-0.410640873236206 0.954255232732162 -0.147886263760743 0.759793319115318 0.0183482544886740
0.231143583536335 0.304638143131838 -0.528664154404583 0.0739711055845102 0.0410433205157124
-0.778491697308234 0.966653453252213 -0.383947457004414 -0.527873684868762 0.0139368201993277
-0.180274497367222 -0.0792041207370926 0.828782356307522 -0.777765421528772 0.0315300612985717
0.540286687837802 -0.208086450042028 -0.948367080027728 -0.501356657306036 0.0215578327462099
-0.683026871793909 0.647010501071650 -0.973583715205816 0.370583426726367 0.0161108573238146
-0.993338263553449 -0.368646129691905 -0.737371067829234 -0.348475820258963 0.0147573865118333
0.407947779669019 -0.815591287366472 -0.0796807556349552 0.378883833053981 0.0331223595693260
0.938583690749431 -0.673570409626489 0.750349855298878 0.515481332659911 0.0138830007891160
0.676361893172788 -0.0863458892282786 0.307033851877092 -0.222719471684161 0.0666800814123564
0.871158904206783 0.833748485858754 -0.0988153767941961 0.190418047822592 0.0231223581306122
-0.637055255430739 0.561219983742431 0.650334703413941 -0.0934633784282683 0.0464871742390699
-0.724596294549971 -0.469996083934142 0.597859508917895 0.576481467431314 0.0349899149656204
-0.0633965531889436 0.107495869838039 0.150581945391035 0.708624486280424 0.0579979230656018
0.447670409694807 0.676539689861564 -0.761277790685523 0.818329189952187 0.0206811254936501
-0.421094936258687 -0.384610025091731 -0.645174618242432 0.192061679511636 0.0430978935629120
0.144084034877935 0.920034465753694 0.719442066934779 0.265836622954943 0.0226831954639939
-0.511575703485635 -0.940233287027892 -0.881122093604340 -0.679836608445536 0.00914818101224769
0.903361192617833 -0.930618551587704 -0.556114178416505 -0.368802948869006 0.0133824642384102
-0.451300661973021 -0.678204534689092 0.109872507715082 -0.268415947407672 0.0469834603269315
0.570179507325998 0.946048343399397 -0.888875656537771 -0.502288128155230 0.0114411429728491
0.947673444496712 -0.0487093539097375 -0.745420922954487 0.483440076541598 0.0180891170799238
-0.151578782518484 0.536570691044281 -0.432491091797662 -0.296255229184200 0.0429298801103472
0.200254358361331 -0.574573679946025 -0.370917668694681 -0.848237515108908 0.0354514497467619
0.703268719144780 -0.538649441561851 -0.243402446610143 0.932031263765523 0.0178590105949260
-0.851069823343954 -0.999999000000274 -0.332766663879255 0.640694186502822 0.0109542526977389
0.778210999922193 -0.689412923038060 0.645938727211798 -0.866284593236453 0.0141564568596360
0.861114502173077 0.635646385445806 0.943650909951228 -0.537424461094664 0.0122992882684838
0.923895085294775 0.356961947592050 -0.390843097452625 -0.911346350395596 0.0147169035847508
0.224936370766468 0.759504704125777 0.295151117998272 -0.810538235949664 0.0343456718994955
0.753566197170202 0.547890728899287 0.582098594572620 0.865739837846072 0.0201259507621183
-0.999996169574511 0.450595235653401 -0.0687856135220421 0.522619830858851 0.0196754195407364
-0.740580150798581 0.648489590619417 0.938458459820395 0.997858479760182 0.00660961411039667
-0.641393244038470 -0.177020578876251 -0.678531778799864 0.993823966856282 0.0158119117410319
0.101688221877749 -0.925804660338255 0.769880631707084 -0.240864991838435 0.0208587330250274
0.183235217131754 -0.787109851166051 -0.944143000956805 0.613293643593588 0.0158948230283889
-0.0665844458312762 -0.866922211430191 0.698247471706727 0.981025573223252 0.0101514764249415
-0.494502217917924 0.382211470283539 -0.824748517891121 -0.935346887279527 0.0160972432916053
-0.973108310610189 -0.643578784698889 0.999996903007507 -0.263921398566453 0.00715355417527909
-0.800132635705771 0.0390203514319736 0.0939369967131938 -0.741463689395994 0.0313505282787613

118 119 120 121 122
Compliance

0

0.1

0.2

0.3

0.4

PD
F

Sp. Grid
Des. Quad.

Fig. 10. Robust topology design of the MBB beam (left) compliance PDF with sparse grid and
designed quadrature (right).

DESIGNED QUADRATURE A2059

Table 4
Mean and standard deviation estimation for the robust topology design.

Quadrature rule µ eµ � e� Cost
Sparse grid 120.1326 2.44e-04 0.7836 2.16e-03 81 simulations
Designed quadrature 120.1028 3.33e-06 0.7854 1.27e-04 43 simulations

REFERENCES

[1] N. Agarwal and N. R. Aluru, A domain adaptive stochastic collocation approach for analysis
of MEMS under uncertainties, J. Comput. Phys., 228 (2009), pp. 7662–7688, https://doi.
org/10.1016/j.jcp.2009.07.014.

[2] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial
di↵erential equations with random input data, SIAM Rev., 52 (2010), pp. 317–355, https:
//doi.org/10.1137/100786356.

[3] C. Bernardi and Y. Maday, Spectral methods, in Techniques of Scientific Computing (Part
2), Volume 5, P. Ciarlet and J. Lions, eds., Elsevier, 1997, pp. 209–485, https://doi.org/
10.1016/S1570-8659(97)80003-8.

[4] D. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, 2008.
[5] L. Bos, M. Caliari, M. Vianello, S. De Marchi, and Y. Xu, Bivariate Lagrange interpola-

tion at the Padua points: The generating curve approach, J. Approx. Theory, 143 (2006),
pp. 15–25.

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[7] H. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.
[8] H.-J. Bungartz and S. Dirnstorfer, Multivariate quadrature on adaptive sparse grids, Com-

puting, 71 (2003), pp. 89–114, https://doi.org/10.1007/s00607-003-0016-4.
[9] M. Caliari, S. De Marchi, and M. Vianello, Bivariate polynomial interpolation on the

square at new nodal sets, Appl. Math. Comput., 165 (2005), pp. 261–274, https://doi.org/
10.1016/j.amc.2004.07.001.

[10] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Funda-
mentals in Single Domains, 1st ed., Springer, Berlin, New York, 2006; corr. 4th printing,
2011.

[11] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Evolution
to Complex Geometries and Applications to Fluid Dynamics, Springer, Berlin, 2007; 2nd
ed., 2014.

[12] A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best N-term Galerkin approx-
imations for a class of elliptic sPDEs, Found. Comput. Math., 10 (2010), pp. 615–646,
https://doi.org/10.1007/s10208-010-9072-2.

[13] P. G. Constantine, M. S. Eldred, and E. T. Phipps, Sparse pseudospectral approximation
method, Comput. Methods Appl. Mech. Engrg., 229 (2012), pp. 1–12, https://doi.org/10.
1016/j.cma.2012.03.019.

[14] P. Davis and P. Rabinowitz, Methods of Numerical Integration, Courier Corporation, 2007,
Chap. 2.

[15] W. Gautschi, Construction of Gauss-Christo↵el quadrature formulas, Math. Comp., 22
(1968), pp. 251–270.

[16] T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Algorithms,
18 (1998), pp. 209–232, https://doi.org/10.1023/A:1019129717644.

[17] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover, 2002.
[18] G. Golub and J. Welsch, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969),

pp. 221–230.
[19] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed., Johns Hopkins Stud. Math.

Sci., The Johns Hopkins University Press, 1996.
[20] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, 1998.
[21] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete

ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503, https://doi.org/10.
1137/0914086.

[22] F. Heiss and V. Winschel, Quadrature on Sparse Grids, http://www.sparse-grids.de/.
[23] F. Heiss and V. Winschel, Likelihood approximation by numerical integration on sparse grids,

J. Econometrics, 144 (2008), pp. 62–80.
[24] J. Jakeman and A. Narayan, Generation and Application of Multivariate Polynomial Quadra-

ture Rules, preprint, https://arxiv.org/abs/1711.00506, 2017.

A2060 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

[25] V. Keshavarzzadeh, F. Fernandez, and D. Tortorelli, Topology optimization under un-
certainty via non-intrusive polynomial chaos expansion, Comput. Methods Appl. Mech.
Engrg., 318 (2017), pp. 120–147.

[26] M. Liu, Z. Gao, and J. S. Hesthaven, Adaptive sparse grid algorithms with applications to
electromagnetic scattering under uncertainty, Appl. Numer. Math., 61 (2011), pp. 24–37,
https://doi.org/10.1016/j.apnum.2010.08.002.

[27] D. Lubinsky, A survey of weighted polynomial approximation with exponential weights, Surv.
Approx. Theory, 3 (2007), pp. 1–105.

[28] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, Internat. Ser. Oper. Res.
Management Sci. 116, Springer, 2008.

[29] J. Ma, V. Rokhlin, and S. Wandzura, Generalized Gaussian quadrature rules for systems
of arbitrary functions, SIAM J. Numer. Anal., 33 (1996), pp. 971–996, https://doi.org/10.
1137/0733048.

[30] S. E. Mousavi, H. Xiao, and N. Sukumar, Generalized Gaussian quadrature rules on arbitrary
polygons, Internat. J. Numer. Methods Engrg., 82 (2010), pp. 99–113, https://doi.org/10.
1002/nme.2759.

[31] A. Narayan and J. D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collo-
cation and high-dimensional approximation, SIAM J. Sci. Comput., 36 (2014), pp. A2952–
A2983, https://doi.org/10.1137/140966368.

[32] A. Narayan, J. Jakeman, and T. Zhou, A Christo↵el function weighted least squares algo-
rithm for collocation approximations, Math. Comp., 86 (2017), pp. 1913–1947.

[33] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992.
[34] A. B. Owen, Quasi-Monte Carlo sampling, in Monte Carlo Ray Tracing: SIGGRAPH 2003,

Course 44, 2003, pp. 69–88.
[35] T. Patterson, The optimum addition of points to quadrature formulae, Math. Comp., 22

(1968), pp. 847–856.
[36] E. Ryu and S. Boyd, Extensions of Gauss quadrature via linear programming, Found. Comput.

Math., 15 (2015), pp. 953–971.
[37] I. H. Sloan and H. Wozniakowski, When are Quasi-Monte Carlo algorithms e�cient for

high dimensional integrals?, J. Complexity, 14 (1998), pp. 1–33, https://doi.org/10.1006/
jcom.1997.0463.

[38] S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions, Soviet Math. Dokl., 4 (1963), pp. 240–243.

[39] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Texts Appl. Math. 12,
Springer-Verlag, 2002.

[40] A. Stroud, Some fifth degree integration formulas for symmetric regions II, Numer. Math., 9
(1967), pp. 460–468.

[41] A. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, 1971.
[42] A. H. Stroud, Remarks on the disposition of points in numerical integration formulas, Math.

Tables Other Aids Comput., 11 (1957), pp. 257–261.
[43] A. H. Stroud, Numerical integration formulas of degree two, Math. Comp., 14 (1960), pp. 21–

26, https://doi.org/10.2307/2002981.
[44] G. Szegö, Orthogonal Polynomials, 4th ed., AMS, 1975.
[45] M. A. Taylor, B. A. Wingate, and L. P. Bos, A cardinal function algorithm for computing

multivariate quadrature points, SIAM J. Numer. Anal., 45 (2007), pp. 193–205, https:
//doi.org/10.1137/050625801.

[46] M. A. Taylor, B. A. Wingate, and R. E. Vincent, An algorithm for computing Fekete
points in the triangle, SIAM J. Numer. Anal., 38 (2000), pp. 1707–1720, https://doi.org/
10.1137/S0036142998337247.

[47] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B,
58 (1996), pp. 267–288.

[48] M. van Barel, M. Humet, and L. Sorber, Approximating optimal point configurations for
multivariate polynomial interpolation, Electron. Trans. Numer. Anal., 42 (2014), pp. 41–63.

[49] E. Van den berg and M. Friedlander, SPGL1: A Solver for Large-Scale Sparse Reconstruc-
tion, http://www.cs.ubc.ca/⇠mpf/spgl1/.

[50] E. Van den berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solu-
tions, SIAM J. Sci. Comput., 31 (2008), pp. 890–912, https://doi.org/10.1137/080714488.

[51] E. Van den berg and M. P. Friedlander, Sparse optimization with least-squares constraints,
SIAM J. Optim., 21 (2011), pp. 1201–1229, https://doi.org/10.1137/100785028.

[52] G. Wasilkowski and H. Wozniakowski, Explicit cost bounds of algorithms for multivariate
tensor product problems, J. Complexity, 11 (1995), pp. 1–56.

[53] H. Xiao and Z. Gimbutasb, A numerical algorithm for the construction of e�cient quadrature

DESIGNED QUADRATURE A2061

rules in two and higher dimensions, Comput. Math. Appl., 59 (2010), pp. 663–676.
[54] D. Xiu, Numerical integration formulas of degree two, Appl. Numer. Math., 58 (2008),

pp. 1515–1520, https://doi.org/16/j.apnum.2007.09.004.
[55] D. Xiu and J. S. Hesthaven, High-order collocation methods for di↵erential equations with

random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139, https://doi.org/10.1137/
040615201.

[56] Y. Xu, A characterization of positive quadrature formulae, Math. Comp., 62 (1994), pp. 703–
718, https://doi.org/10.1090/S0025-5718-1994-1223234-0.

